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Abstract: In this chapter, we give conditional representations for famihes of 
statistics based on higher-order spacings and spacing frequencies. This allows 
us to compute accurate approximations to the distribution of such statistics, 
including tail probabilities and critical values. These results generalize those 
discussed in Gatto and Jammalamadaka (1999) and are essential in using such 
statistics in various testing contexts. 
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15.1 Introduction 

In this article, we provide some conditional representations that allow us to 
compute accurately the distribution of a large number of test statistics based on 
higher-order spacings and "spacing frequencies," following the ideas suggested 
in Gatto and Jammalamadaka (1999). The key point is that many important 
test statistics including the chi-square goodness-of-fit statistic, can be rewritten 
as conditional statistics, and the technique we develop here allows for very 
accurate approximations of their P-values, or in finding the critical values at 
a given level. Testing problems that were already considered by Gatto and 
Jammalamadaka (1999) included the two following classes of tests: (i) The 
class of tests based on simple spacings statistics, that is, based on the gaps 
between successive values of the ordered sample; and (ii) the class of tests based 
on the "spacing-frequencies", that is, the frequencies of one sample that fall in 
between the successive order statistics of the other sample, which includes many 
rank tests. We generalize (i) to tests based on higher-order spacings, or m-step 
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spacings, which are the gaps between order statistics and ones that are m steps 
away; and (ii) to tests based on higher-order spacing frequencies, which are the 
frequencies of one sample that fall in between the order statistic of the other 
sample that are m steps away. The reason to consider such tests is that they 
have higher asymptotic local powers, as demonstrated in Rao and Kuo (1984) 
for higher order spacings, and in Jammalamadaka and Schweitzer (1985) for 
higher-order spacing frequencies. 

For convenience, we first review the "conditional saddlepoint approxima
tion" that has been described in Gatto and Jammalamadaka (1999) which 
is the main tool for the proposed accurate approximations. The saddlepoint 
approximation is a well-known method of asymptotic analysis that allows us 
to approximate efficiently contour integrals of a general type. This method, 
also called the method of steepest descent, was brought into statistical use by 
Daniels (1954) and Lugannani and Rice (1980) for approximating the distribu
tion of the sum of independent and identically distributed (i.i.d.) observations. 
The saddlepoint formula Pnih \ ^2) below enables us to find the F-values of 
a test statistic Tin(S'i, . . . , Sn) based on the dependent quantities S i , . . . , 5^ 
which admit the conditional representation Tn{Si,,.., Sn) ~ Ti^(Xi , . . . ,Xn) \ 
T2n{Xi,..., Xn) = t2, where "~" signifies the equivalence in distribution. Con
sider the independent random variables X i , . . . , Xn, and a statistic {Tin, T2n), 
Tin = TiniXi,..., Xn) G R and T2n = T2n{Xi,..., Xn) G R, defined by 

E l llJii{Xi,Tin,T2n) \ _r\ 
.^^\ ^l;2i{Xi,T2n) ) 

The joint cumulant generating function of the sum of score functions ^pli and 
'02i is given by 

^n(A, t) = J2 log E[exp{Ai^H(X^, ti,t2) + \2^2i{Xu t2)}l 

where A — (Ai, A2) and t = (ti, ̂ 2). 

Step 1 Find a G R^ and /? G R, solutions of the equations 

— Kni\,t) = 0, —Kni{0,X2),t) = 0. 

(15.1) 

s tep 2 Define 

^ n ( A , i ) = ^ ^ i ^ „ ( A , f ) , K'^ni^2,t) = ^KnmX2),t), 

s = ai 
det{K{a,t)) 

KUM 
, r = sgn{ai){2[Kn{{0,p),t)-Kn{a,t)]}^, 
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and 

Pnih \t2) = l - $(r) + (/>(r) ( ^ - ^ ) . (15.2) 

where 0(-) and $(•) are the standard normal density and distribution functions, 
and Qfi is the first element of a. Then, Vti, 2̂ and as n -^ 00, 

P[Tin > h I r 2 , = t2] = Pnih \ t2){l + 0{n-^)}. (15.3) 

Note that there is an asymptotically equivalent version of (15.2) which is 
given by 

P*( t i | t2 ) = l - $ ( r + ^ l o g | ^ | ) , (15.4) 

and we refer to Example 15.2.2 for a numerical comparison. 
The two steps given above allow one to approximate a tail probability or a 

P-value. If we are interested in quantiles or critical values, see Gatto (2001, 
Section 1) for an efficient algorithm for inverting this saddlepoint approxima
tion. 

15.2 Tests Based on Higher-Order Spacings 

Statistics based on spacings play an important role in goodness-of-fit tests and 
in tests on hazard rates in the context of reliability; see Pyke (1965) for an 
excellent review. One-step spacings are the gaps between the successive ordered 
sample values and, more generally, m-step spacings are the gaps between m 
successive ordered sample values. One-step spacings are also very important 
with circular data, that is, when data are directions in two dimensions and are 
represented by angles. Indeed, one-step spacings are maximal invariant under 
changes of origin and sense of rotation. Except for one or two special cases, 
the exact distribution of such statistics based on uniform spacings is unknown. 
For most cases, the asymptotic distribution is known but it can be potentially 
misleading, especially when the sample size is moderate to small. Gatto and 
Jammalamadaka (1999, Section 3.1) derived saddlepoint approximations for 
test statistics based on uniform spacings. In this section, we generalize this 
result and provide saddlepoint approximations to test statistics based on higher-
order or m-step uniform spacings. Tests based on such higher-order spacings 
are known to be more efficient as shown by Rao and Kuo (1984). 

Consider Xi , . . . ,Xjv_i to be a sample of independent random variables 
from a given absolute continuous distribution F with support in R. The funda
mental problem of goodness-of-fit, is to test F == FQ, where FQ is specified. By 
the probability integral transform Ui = Fo{Xi)^ i = 1 , . . . , A/" — 1 the goodness-
of-fit test is reduced to one of testing if C/i,..., UN-I are uniformly distributed. 
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that is, to test the null hypothesis 

Iio'F{u) = u, VtxG [0,1). 

Let 0 < [/(I) < • • • < [/(7V-1) < 1, denote the ordered sample. The simple or 
one-step spacings D i , . . . , D^ are the gaps between this ordered sample, viz., 

Di = Ui^i) - C/(i_i), i = 1 , . . . , AT, 

where C/(o) = 0 ^nd [/(̂ v) ^ 1. More generally, the m-step disjoint spacings are 
the gaps between m successive values of the ordered sample. That is, denoting 
[xj for the greatest integer less than or equal to x, for M = [iV/mJ, 

Am ^ U(im) - C (̂(2-l)m)5 i = 1, . . ., M. 

Let h{') and /li(-), i = 1 , . . . , M, be real-valued functions that satisfy some 
weak regularity conditions. Most spacings statistics can then be expressed as 

M 

n = Y.hi{MDt^\ (15.5) 

which is not symmetric in the spacings, or as 

. M 

Tn = -^Y.h{MDt^l (15.6) 

which is symmetric in the spacings. Sethuraman and Rao (1970) and Rao and 
Sethuraman (1975) showed that the class of symmetric tests (15.6) based on one-
step spacings cannot discriminate alternatives converging to the null hypothesis 
at asymptotic rates faster than N~^/^^ which is a drawback when compared, 
for example, to the Kolmogorov-Smirnov test. Del Pino (1979) showed that 
tests based on m-step spacings, m > 1, have better asymptotic efficiencies than 
tests based on one-step spacings. Typical examples of symmetric test statistics 
(15.6) are obtained with 

h{x) = logx, \x — 1|, x^, 

a > —1/2 and 7̂  0 or 1. The first two functions lead to the Rao and the 
log higher-order test statistics and they will be developed in Examples 15.2.1 
and 15.2.2 below. The last function for a = 2 leads to the Greenwood higher-
order test statistic and will be developed in Example 15.2.3. It has maximum 
asymptotic relative efficiency among symmetric m-step spacings statistics, is 
asymptotically more efficient that the one-step Greenwood statistic, and indeed 
the efficiency grows with m; see Table 2 in Rao and Kuo (1984). 
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The exact distribution of spacings statistics is unknown in most cases and 
it is common practice to rely on the limiting normal distribution, which does 
however not guarantee sufficient accuracy, if we have a sample of small to mod
erate size, or if we are interested in small tail probabilities. If a higher accuracy 
is desired, the conditional saddlepoint approximation can be applied with the 
following conditional representation of the m-step spacings. If F i , . . . , YM are 
independent Gamma(m, b) random variables with density {6^/r(m)}y^~^e~^^, 
y > 0, then, under HQ and V6 > 0, 

(MD^i. { M ^ 

{Y^,...,YM)\Y.Yi = M\. (15.7) 
The equivalence in (15.7) is easy to justify; see, for example, Wilks (1962, 
Section 7.7). Thus ( i ^ i ' ^ , . . . , ^(M-i).m) ^ Dirichlet(m,..., m; m), and these 
m-spacings admit the conditional Gamma representation (15.7). This condi
tional representation together with the computational steps given in Section 
15.1 allow us to compute a saddlepoint approximation for the distribution of 
symmetric and asymmetric test statistics based on m-step spacings. The par
ticular case m = 1 in (15.7) corresponds to the exponential representation of 
simple spacings, and using this, Gatto and Jammalamadaka (1999, Section 3.1) 
developed four examples with one-step spacing statistics: the Rao spacings 
test, the log spacings test, the Greenwood spacings test, and the locally most 
powerful spacings test given by hi{NDi) = ̂ ^~^\j;^)NDi. Saddlepoint ap
proximations were computed for these four examples with sample sizes as low 
as TV = 3, and they showed a very high accuracy, even for small tail probabili
ties. By means of this new conditional representation, we provide some further 
examples for the case of higher-order spacings. 

Example 15.2.1 (The Rao higher-order spacings test) In order to ap
ply Steps 1 and 2 of the saddlepoint approximation in Section 15.1, we must 
determine the joint cumulant generating function of the score functions 

/ ( 1 - x - t i ) , i f x G [ 0 , l ) , 
^Mx , t i j - I ( ^ _ i _ t i ) , i fxG[ l ,oo) , 

with il)ji = %l)j^ i = 1 , . . . , n, j = 1, 2. With some algebraic computations, we 
can see that, for 6 = m and 2̂ = 1, this cumulant generating function has the 
form 

^M((Ai,A2),(ti,l)) = M[mlogm-mlog(m-f -Ai - A2) + A i ( l - t i ) - A2 

+ log {P{m, m + Ai - A2) + ("^ + ^ ^ - S - e - ^ ^ ^ 
'̂  771 — Ai — A2 

[1-P(m,m-Ai-A2)]}], 
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where P(m, x) = I- e~^ Yl^^ ^ V J ' ^ ^ =̂  1? 2 , . . . , and x G R. The derivatives 
of KMii^h A2), (ti, 1)) with respect to Ai and A2 can be obtained by automatic 
symbohc computation (e.g., with Maple). The advantage of choosing h — m 
as scale parameter in the conditional Gamma representation is that the ex
pectation of the sample mean of the Gamma random variables becomes one, 
and hence the "conditional saddlepoint equation," that is, the second equa
tion in Step 1, has the trivial solution /? — 0. Furthermore, /? = 0 leads to 
^ 2 M ( / ^ ' ^ ) = MVar(Yi) = M/m and to XM((0,^),t) = 0 in the formulas of s 
and r in Step 2. 

Example 15.2.2 (The log higher-order spacings test) The choice of the 
score function h{x) = logx in (15.6) was proposed by Darling (1953) and it 
maximizes Bahadur efficiency; see Zhou and Jammalamadaka (1989). For the 
case b = m and 2̂ = 1, the joint cumulant generating function in (15.1) is given 
by 

i^M((Ai,A2),(il,l)) 
r(Ai + m) 

= M - Xiti - A2 + m log m — (Ai + m) log(m - A2) + log • 
r(m) 

provided that Ai > —m and A2 < m. The second derivatives of KM{{^I, A2), 
(<i, 1)) with respect to Ai and A2 are the following: 

O^KMUXI, A2), (ti, l))/{dXif = * (1, A, + m) , 

a2i^M((Ai, A2), (ti, l))/{dXidX2) = {m- X2)-

Xi +m 

\-i 

and 

d'KM{{XuX2)^{ti,l))/{dX2y = 
(m - A^) 2 ' 

where ^(2:) = r\z)/r{z) is the digamma function and *(2:,n) = {d/dz)'^'if{z) 
is the polygamma function, with ^{z} > 0 and n e Af. The first derivatives 
are not necessary because the saddlepoint equation can be efficiently solved by 
a minimization routine such as MatlaVs routine f minsearch. In this example, 
we consider N = 6 and m = 2, yielding the very small number of summands 
or effective sample size M = 3. The numerical results are displayed in Figure 
15.1 in terms of absolute errors | PMC ~" Psp I ^^^ relative absolute error 
I PMC—Psp I / inin{PMC51—PMC}? where PMC and Psp denote the distribution 
of the test statistic obtained by the 10^ Monte Carlo simulated values of the test 
statistic and by the saddlepoint approximation in the Lugannani and Rice form 
in (15.2), or in its asymptotic equivalent version in (15.4), sometimes referred 
to as "Barndorff-Nielsen formula." 
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Prom Figure 15.1, we can see that the saddlepoint approximation has a 
small relative error over the whole domain of the distribution, and therefore is 
uniformly accurate. The Lugannani and Rice version in (15.2) has all relative 
errors below 10 %, and it appears substantially more accurate than its asymp
totic equivalent formula in (15.4). For this test of uniformity, the small left tail 
probabilities are the most important. Note that the small increment of relative 
errors at both ends of the domains is not necessarily due to an inaccuracy of the 
saddlepoint approximation, because it is based on very few simulated values. 
(A further analysis based on importance sampling would provide a more reli
able comparison.) The domain of the distribution is (—oo, 0) (all approximated 
distributions are almost zero at the left of —1), and the density function has a 
negative skewness. 

Matlab programs for the computation of this saddlepoint approximation can 
be found at the address http:/ /www.stat.unibe.ch/~gatto. 

Example 15.2.3 (The Greenwood higher-order spacings test) The 
choice of the score function h{x) = x^ in (15.6) defines the Greenwood test 
statistic. The joint cumulant generating function (15.1) for 6 = m and t2 = I 
is given by 

i^M((Ai,A2),(*i,l)) = M m log 2 + m log m — Xiti — A2 — 
4Ai 

TTl 

-— log(-Ai) + (m - 1) log(m - A2) 

m-l . o \3 Vi^^^ {yn-Mf^ 

+iogE(-i)-"-'(;;:^) .̂̂0 - - - - r(i + i)r(m-i) 

provided that Ai < 0 and A2 < m, and where r (a , x) = J^ e~^t^~^dt is the 
incomplete Gamma function. 

15.3 Tests Based on Higher-Order 
Spacing-Frequencies 

Consider a first sample of (A^ — 1) independent random variables X i , . . . , Xpj-i, 
with underlying absolute continuous distribution F defined on A C R, and a 
second sample of n independent random variables Yi , . . . , 1^, with underlying 
absolute continuous distribution G, also defined on ̂  C R. The general two-
sample problem is to test the null hypothesis HQ: F = G. Define the random 
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Figure 15.1: Saddlepoint and Monte Carlo approximations to the distribution 
of the log higher-order spacings statistic, Â  = 6, m = 2 and M = 3. Upper 
figure: absolute error | PMC — Psp I- Lower figure: relative absolute error 
I PMC — PSP I / nain{PMCj 1 — PMC]- PMC- Monte Carlo approximation to the 
distribution. Psp: saddlepoint approximations to the distribution. Solid line: 
Lugannani and Rice approximation in (15.2). Dashed line: Barndorff-Nielsen 
approximation in (15.4) 
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variables 
n 

Sj = Y.i{Y, e [Xy_i),Xy))}, i - i,... ,7V, 

where for convenience, we take X(o) = inf{A} and ^(iv) = sup{A}. The 
numbers {Si,.. .^SN} are called the spacing frequencies becaise they corre
spond to the frequencies or counts of the {Yi} that fall in between successive 
{X(j)}. In fact, if ii(X(fc)) denotes the rank of the fcth largest {Xj} in the 
combined sample. A: = 1 , . . . , AT, it is easily seen that i?(X(fc)) — Yl^^i{Sj + 1), 
or, Sk = i?(X(;t)) — R{X(^k-i)) "" I5 k = 1,.. .,N, so that the {Sj} are also the 
"rank differences." 

Let h{') and hj{'), j = 1 , . . . , A ,̂ be real-valued functions satisfying certain 
regularity conditions. Hoist and Rao (1980) consider statistics of the form 
^-1 /2 ^ j ^ ^ hj{Sj) and N~^/'^ I^j^i ^{^j) ^^^ their asymptotic properties when 
both N and n tend to infinity; formally, through nondecreasing sequences of 
positive integers {Njy} and {njy} such that, as 1/ -^ oc, 

N 
Niy -^ 00, rijy -^ 00 and —^ = pjy —^ p, 0 < p < 00. 

Specifically, they show that if F i , . . . , VAT are independent geometric random 
variables with probability distribution function 

F[Vi = k] = {p/{p+l)}''-l/ip+l), fc = 0 , l , 2 , . . . , (15.8) 

then, under HQ, 
N 
Y,hjiSj)^A{fx,a% (15.9) 
i=i 

where /x = E E J L i hj{Vj)] and a^ = Var (ZjLi hj{Vj) - PYlfLj Vj) in which /3 
is the regression coefficient given by 

/? = C o v | | ] / . , ( F , ) , | ; F , j / v a r f | ; F , j . 

As we stated already, the asymptotic efficiencies are improved by considering 
the corresponding higher-order spacings. Therefore, we now consider the more 
general case. For m > 1, denote M = [N/m\, and define the "nonoverlapping" 
or disjoint mth order spacing-frequencies 

771—1 M 

^k-m ^ 2 - / ^k-m+j = / ^ I{Yj G [X(^k-m-l)i X(^k-m+m-l))}^ fc = 1, . . . , M - 1, 
j=0 k=l 

where we take 5̂ "̂"̂  = S'^^^ ior k > M circularly, for convenience. Let /i(-) 
and hj{'), j = 1 , . . . , AT, be real-valued functions satisfying certain regularity 
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conditions [see Assumption (A), in Jammalamadaka and Schweitzer (1985)], 
and define the general classes of test statistics 

M 

T* = j:f'j{Si"^), (15.10) 

and 
M 

7^.-EM5]2). (15.11) 

which represent, respectively, the nonsymmetric and the symmetric test statis
tics based on such higher-order spacing frequencies. Jammalamadaka and 
Schweitzer (1985) discuss the asymptotic normality of such statistics (and in
deed, more general ones based on the "overlapping" mth-order spacing frequen
cies) both under the null hypothesis, as well as under close alternatives. 

The following optimality result has been proved there; see Theorem 3.2 in 
Jammalamadaka and Schweitzer (1985) for further details. Consider {GAT}, a 
smooth sequence of distribution functions converging towards F , as A/̂  —> oc. 
It turns out that the asymptotically most powerful test for the null hypothesis 
Ho against the sequence of simple alternatives 

AN : G = GN 

is to reject HQ when 
M 

3=1 
S ' I M T T r^"*>^. (i5-'2) 

where /(•) is the derivative oi L{u) = limAr-̂ oo ̂ ^ [GN{F^ ^H '^ ) ) " ' ^ ] ? 0 < t̂  < 1. 
However, such linear combinations of higher-order spacing frequencies in {Sj^} 
are equivalent to linear combinations in one-step spacing frequencies Sj, already 
discussed in Gatto and Jammalamadaka (1999, Section 4) and need no further 
elaboration. 

However, among the class of symmetric tests, there is reason to consider 
higher-order spacing frequencies. It is shown there that the sum of squares, 
leading to the statistic 

M 

E(^]S)^ (15.13) 
j=i 

is the optimal choice among all such symmetric nonoverlapping statistics. When 
m = 1, this has been introduced by Dixon (1940) and has been shown to be 
locally most powerful by Hoist and Rao (1980) among such tests based on 
one-step spacing-frequencies. 
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For the more general statistics based on the mth-order spacing frequencies, 
consider the independent random variables r / i , . . . , r?M with the same negative 
binomial distribution with parameters m and p/{l + p)^ viz., 

P [ , , . , ] = - - r ^ ] T^) T^] , i = 0 , l , . . . . (15.14) 

A moment's reflection shows that these negative binomial random variables 
arise by taking sums of the independent geometric random variables m at a 
time, corresponding to one-step spacing frequencies. It can be verified that 
under HQ, the mth-order spacing frequencies have the same distribution as 
independent negative binomial random variables conditioned to sum up to n, 
that is, if 7?i,..., rjM are i.i.d. with probability function (15.14), then \fp G (0,1), 
it can be checked that 

M 

{5^\ . . . ,5P}^{ryi , . . . , ryM}lE^.=^-

To illustrate the power of our conditional approach through which accu
rate saddlepoint approximations can be obtained, we quote a simple result for 
symmetric statistics based on nonoverlapping mth-order spacing frequencies, 
which is a consequence of the results of Jammalamadaka and Schweitzer (1985, 
Theorem 4.2). 

Proposition 15.3.1 Under HQ^ i/V'^Vij 

M 

M-V2 J^{h{Sl"^) - E[h{rj)]} ^ m a % (15.15) 

i=i 

where 

a' = Var(/i(r?)) - -^{Coy\h{r,),rj), 
l + p 

The same conditioning idea used for obtaining the first-order approximation 
in (15.15) can be exploited for the construction of our saddlepoint approxima
tion. By defining 

M ^ M -J M 

j=i j=i j=i 

the conditional distributions of (Tf̂  | T2J, = 1) and (Ti^ | T2j^ — 1) can be 
approximated again by Steps 1 and 2 of Section 15.1 and with the result below. 
These approximations are also accurate approximations to the distributions of 
T* and T^ in (15.10) and (15.11), respectively. The following results, which 
can be proved by direct verification from our general results, show how one can 
find saddlepoint approximations for statistics in (15.12) and (15.13). Numerical 
evaluations are somewhat straightforward and are omitted. 
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Proposition 15.3.2 The joint cumulant generating function on (15.1) for the 
test statistic (15.12) is given by 

^M((Ai,A2),(ti,t2)) = -Xiti-M\2t2 + mMlog{l-p) 
M 

- m ^ l o g 1̂1 - p e x p JAi/(^-^1^^^ 

where 0 <p<l and Xil{j/{M + 1)) + A2 < - logp, for j = 1,..., M. 

Proposition 15.3.3 The joint cumulant generating function in (15.1) for the 
test statistic (15.13) is given by 

i^M((Ai,A2),(ti,t2)) = M[-\iti-X2t2 + m\og{l-p) 

-mlog{l -pe^^} + n{Xi)V 

where /^(Ai) = logE[e^^^ ]j J is a negative binomial random variable with 
parameters m and 1 — pe^'^^ 0 < p < 1, Ai < 0 and A2 < — \ogp. 

15.4 Conclusion 

In this discussion, we develop accurate approximations valid for small to mod
erate sample sizes, for the distributions of statistics based on higher order 
spacings, and higher-order spacing frequencies, whose exact distributions are 
unavailable and asymptotics are quite inaccurate. 
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